Hermite–Hadamard–Fejér-Type Inequalities and Weighted Three-Point Quadrature Formulae

نویسندگان

چکیده

The goal of this paper is to derive Hermite–Hadamard–Fejér-type inequalities for higher-order convex functions and a general three-point integral formula involving harmonic sequences polynomials w-harmonic functions. In special cases, estimates are derived various classical quadrature formulae such as the Gauss–Legendre Gauss–Chebyshev first second kind.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate weighted Fractional Representation Formulae and Ostrowski type inequalities

Here we derive multivariate weighted fractional representation formulae involving ordinary partial derivatives of …rst order. Then we present related multivariate weighted fractional Ostrowski type inequalities with respect to uniform norm. 2010 AMS Mathematics Subject Classi…cation : 26A33, 26D10, 26D15.

متن کامل

Quadrature Formulae and Functions of Exponential Type

In this paper we obtain certain generalizations of the trapezoidal rule and the Euler-Maclaurin formula that involve derivatives. In the case of quadrature of functions of exponential type over infinite intervals we find conditions under which existence of the (improper) integral and convergence of the approximating series become equivalent. In the process, we also establish a best possible ver...

متن کامل

Quadrature formulae of non-standard type

We discuss quadrature formulae of highest algebraic degree of precision for integration of functions of one or many variables which are based on non-standard data, i.e., in which the information used is different from the standard sampling of function values. Among the examples given in this survey is a quadrature formula for integration over the disk, based on linear integrals on n chords, whi...

متن کامل

Weighted iteratedHardy-type inequalities

In this paper a reduction and equivalence theorems for the boundedness of the composition of a quasilinear operator T with the Hardy and Copson operators in weighted Lebesgue spaces are proved. New equivalence theorems are obtained for the operator T to be bounded in weighted Lebesgue spaces restricted to the cones of monotone functions, which allow to change the cone of non-decreasing function...

متن کامل

Quadrature formulae for Fourier coefficients

We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Michhelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9151720